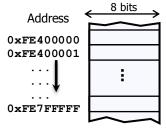
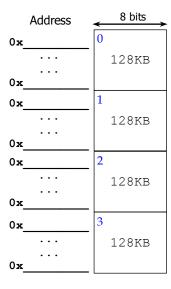
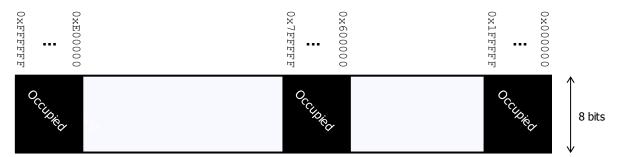
Homework 2


(Due date: October 4th @ 5:30 pm)

Presentation and clarity are very important! Show your procedure!


PROBLEM 1 (28 PTS)

- a) What is the minimum number of bits required to represent: (2 pts)
 - √ 16385 symbols?


- ✓ Memory addresses from 0 to 131072?
- b) A microprocessor has a 32-bit address line. The size of the memory contents of each address is 8 bits. The memory space is defined as the collection of memory positions the processor can address. (6 pts)
 - What is the address range (lowest to highest, in hexadecimal) of the memory space for this microprocessor? What is the size (in bytes, KB, or MB) of the memory space? $1KB = 2^{10}$ bytes, $1MB = 2^{20}$ bytes, $1GB = 2^{30}$ bytes
 - A memory device is connected to the microprocessor. Based on the size of the memory, the microprocessor has assigned the addresses 0xFE400000 to 0xFE7FFFFF to this memory device.
 - What is the size (in bytes, KB, or MB) of this memory device?
 - What is the minimum number of bits required to represent the addresses only for this memory device?

- A microprocessor has a memory space of 512 KB. Each memory address occupies one byte. (8 pts)
 - What is the address bus size (number of bits of the address) of this microprocessor?
 - What is the range (lowest to highest, in hexadecimal) of the memory space for this microprocessor?
 - The figure to the right shows four memory chips that are placed in the given positions:
 - Complete the address ranges (lowest to highest, in hexadecimal) for each of the memory chips.

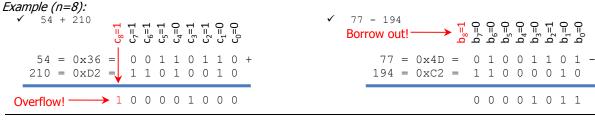
- d) The figure below depicts the entire memory space of a microprocessor. Each memory address occupies one byte. (12 pts)
 - What is the size (in bytes, KB, or MB) of the memory space? What is the address bus size of the microprocessor?
 - If we have a memory chip of 2MB, how many bits do we require to address 2MB of memory?
 - We want to connect the 2MB memory chip to the microprocessor. Recall that a memory chip must be placed in an address range where every single address share some MSBs (e.g.: 0x600000 to 0x7FFFFFF). Provide a list of all the possible address ranges that the 2MB memory chip can occupy. You can only use any of the non-occupied portions of the memory space as shown below.

1

PROBLEM 2 (28 PTS)

- In ALL these problems (a, b, c), you MUST show your conversion procedure. **No procedure = zero points**.
 - a) Convert the following decimal numbers to their 2's complement representations: binary and hexadecimal. (9 pts)
 ✓ -136.6875, 207.65625, -128.5078125

b) Complete the following table. The decimal numbers are unsigned: (7 pts.)

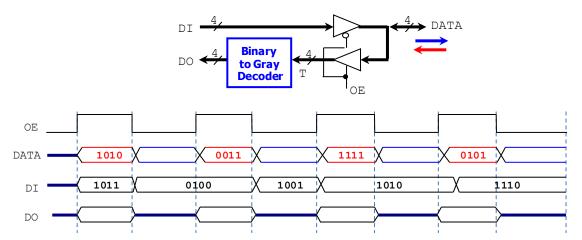

Decimal	BCD	Binary	Reflective Gray Code
278			
		10101011	
			110101010
507			
	100110010101		
			10110101
		01010100	

c) Complete the following table. Use the fewest number of bits in each case: (12 pts.)

REPRESENTATION				
Decimal	Sign-and-magnitude	1's complement	2's complement	
-129				
		01010100		
			10101000	
		11111		
			1000000	
	1100111			

PROBLEM 3 (38 PTS)

a) Perform the following additions and subtractions of the following unsigned integers. Use the fewest number of bits n to represent both operators. Indicate every carry (or borrow) from c_0 to c_n (or b_0 to b_n). For the addition, determine whether there is an overflow. For the subtraction, determine whether we need to keep borrowing from a higher bit. (8 pts)



- b) We need to perform the following operations, where numbers are represented in 2's complement: (24 pts)
 - \checkmark -98 + 256 \checkmark 105 62 \checkmark 206 + 309 \checkmark -127 36 \checkmark -257 + 256 \checkmark 246 + 31
 - For each case:
 - Determine the minimum number of bits required to represent both summands. You might need to sign-extend one of the summands, since for proper summation, both summands must have the same number of bits.
 - ✓ Perform the binary addition in 2's complement arithmetic. The result must have the same number of bits as the summands.
 - ✓ Determine whether there is overflow by:
 - i. Using c_n , c_{n-1} (carries).
 - ii. Performing the operation in the decimal system and checking whether the result is within the allowed range for n bits, where n is the minimum number of bits for the summands.
 - ✓ If we want to avoid overflow, what is the minimum number of bits required to represent both the summands and the result?
- c) Get the multiplication results of the following numbers that are represented in 2's complement arithmetic with 4 bits. (6 pts)
 1001x1011, 1010x0101, 1110x0110.

2

PROBLEM 4 (6 PTS)

• Complete the timing diagram (signals *DO* and *DATA*) of the following circuit. The circuit in the blue box is a 4-bit Binary to Gray Decoder. For example, if T=1100, then DO=1010.

3